Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice.

نویسندگان

  • Rachel A Kohman
  • Erin K DeYoung
  • Tushar K Bhattacharya
  • Lindsey N Peterson
  • Justin S Rhodes
چکیده

Aging is associated with low-grade neuroinflammation including primed microglia that may contribute to deficits in neural plasticity and cognitive function. The current study evaluated whether exercise modulates division and/or activation state of microglia in the dentate gyrus of the hippocampus, as activated microglia can express a classic inflammatory or an alternative neuroprotective phenotype. We also assessed hippocampal neurogenesis to determine whether changes in microglia were associated with new neuron survival. Adult (3.5 months) and aged (18 months) male BALB/c mice were individually housed with or without running wheels for 8 weeks. Mice received bromodeoxyuridine injections during the first or last 10 days of the experiment to label dividing cells. Immunofluorescence was conducted to measure microglia division, co-expression of the neuroprotective indicator insulin-like growth factor (IGF-1), and new neuron survival. The proportion of new microglia was increased in aged mice, and decreased from wheel running. Running increased the proportion of microglia expressing IGF-1 suggesting exercise shifts microglia phenotype towards neuroprotection. Additionally, running enhanced survival of new neurons in both age groups. Findings suggest that wheel running may attenuate microglia division and promote a proneurogenic phenotype in aged mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Voluntary Training after the Induction of Experimental Autoimmune Encephalomyelitis on Some Myelin-Producing Proteins in Female C57BL/6 Mice

Introduction: The aim of the present study was to investigate the effect of voluntary training period after the induction of experimental autoimmune encephalomyelitis (EAE) on some myelin-producing proteins in C57BL/6 female mice. Methods: In this experimental study first 28 mice, which were 6-8 weeks old, were purchased and were randomly divided into three groups. Exercise activity (n=12), he...

متن کامل

[Voluntary wheel running enhances cell proliferation and expression levels of BDNF, IGF1 and WNT4 in dentate gyrus of adult mice].

Adult hippocampal neurogenesis plays important roles in learning, memory and mood regulation. External factors, such as physical exercise, have been found to modulate adult hippocampal neurogenesis. Voluntary running enhances cell proliferation in subgranular zone (SGZ) and increases the number of new born neurons in rodents, but underlying mechanisms are not fully understood. In this study, we...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats

Objective PCOS is the most frequent female endocrine disorder, affecting 5%-10% of women, is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and CYP19 (aromatase) mRNA in the ovary of EV-induced PCOS rat model and the effect of the treadmill and running w...

متن کامل

P108: Microglia in Traumatic Brain Injury

Microglia is one of the first innate immune components. These cells account about 5 to 10% of the entire adult brain cells and are activated by trauma. Complex-mediated inflammatory responses occur through cellular and molecular events during and after the traumatic brain injury (TBI). In-lesion area astrocytes, microglia, and damaged neurons begin to secrete cytokines and chemokines. Microglia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain, behavior, and immunity

دوره 26 5  شماره 

صفحات  -

تاریخ انتشار 2012